Multiscale Segmentation via Bregman Distances and Nonlinear Spectral Analysis

نویسندگان

  • Leonie Zeune
  • Guus van Dalum
  • Leon W. M. M. Terstappen
  • Stephan A. van Gils
  • Christoph Brune
چکیده

In biomedical imaging reliable segmentation of objects (e.g. from small cells up to large organs) is of fundamental importance for automated medical diagnosis. New approaches for multi-scale segmentation can considerably improve performance in case of natural variations in intensity, size and shape. This paper aims at segmenting objects of interest based on shape contours and automatically finding multiple objects with different scales. The overall strategy of this work is to combine nonlinear segmentation with scales spaces and spectral decompositions. We generalize a variational segmentation model based on total variation using Bregman distances to construct an inverse scale space. This offers the new model to be accomplished by a scale analysis approach based on a spectral decomposition of the total variation. As a result we obtain a very efficient, (nearly) parameter-free multiscale segmentation method that comes with an adaptive regularization parameter choice. To address the variety of shapes and scales present in biomedical imaging we analyze synthetic cases clarifying the role of scale and the relationship of Wulff shapes and eigenfunctions. To underline the potential of our approach and to show its wide applicability we address three different experimental biomedical applications. In particular, we demonstrate the added benefit for identifying and classifying circulating tumor cells and present interesting results for network analysis in retina imaging. Due to the nature of nonlinear diffusion underlying, the mathematical concepts in this work offer promising extensions to nonlocal classification problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iterative Regularization Method for Total Variation-Based Image Restoration

We introduce a new iterative regularization procedure for inverse problems based on the use of Bregman distances, with particular focus on problems arising in image processing. We are motivated by the problem of restoring noisy and blurry images via variational methods, by using total variation regularization. We obtain rigorous convergence results, and effective stopping criteria for the gener...

متن کامل

Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Singular Regularization of Inverse Problems

This thesis comments on the use of Bregman distances in the context of singular regularization schemes for inverse problems. According to previous works the use of Bregman distances in combination with variational frameworks, based on singular regularization energies, leads to improved approximations of inverse problems solutions. The Bregman distance has become a powerful tool for the analysis...

متن کامل

Persian Printed Document Analysis and Page Segmentation

This paper presents, a hybrid method, low-resolution and high-resolution, for Persian page segmentation. In the low-resolution page segmentation, a pyramidal image structure is constructed for multiscale analysis and segments document image to a set of regions. By high-resolution page segmentation, by connected components analysis, each region is segmented to homogeneous regions and identifyi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017